The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1  0  1  X  1
 0  X  0  3 2X X+6  X 2X+6 2X  3 X+6 2X+6  6  6 2X 2X+6 X+6  X 2X+3 2X+3  6  6 2X+3  X X+6  0 X+3 X+3  3 2X+6 2X  0 X+6  3 2X+3 X+3 X+3 X+3  3  6 X+6  0 2X 2X+3  X 2X  0 2X+6  3  X  6 X+3 2X+3 2X+6 2X+6 2X+3 2X 2X+3  0  X  6  X  0 2X  6 X+6  0 X+3 X+6  6 X+3 2X+6  3  3 X+3 X+6  3  X 2X+3 2X 2X+6  0  6  0 X+6 2X  X X+6 2X+6 2X+6  X 2X+3  0 2X+3  X  6 2X 2X X+3
 0  0  X 2X+6  3 2X+6  X X+6 2X+3  3 X+6 2X  X 2X+3 2X+6  6 2X  6 X+6 2X X+6 2X+6  6 2X  6  3  X 2X+6  0 X+3  0 X+3  0 2X  X X+6  6 2X+3 X+6  0 X+3 2X+3  X 2X+3 X+3 X+3 2X 2X+6 X+3 2X+3  3  0  3  3  X X+3 2X 2X+6  6 2X+6 2X X+6 X+6  6 X+3  X 2X+6 2X  3  6  3  0  6  X X+3 2X+3 2X+3  3  0 X+6 2X+3  0 X+6 2X 2X+6  3  X  6 2X+3 X+6  3 X+6 2X+3  0  3  X 2X+6 2X 2X

generates a code of length 99 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 194.

Homogenous weight enumerator: w(x)=1x^0+180x^194+78x^195+252x^196+252x^197+582x^198+378x^199+306x^200+48x^201+72x^203+18x^204+18x^205+2x^288

The gray image is a code over GF(3) with n=891, k=7 and d=582.
This code was found by Heurico 1.16 in 31.8 seconds.